Energy-Efficient Node Selection in Multihop Wirelessntworks

نویسنده

  • S Radhika
چکیده

In a single-hop network with multiple relays, selecting a single node to aid in the transmission between a source and a destination outperforms both traditional orthogonal transmissions and distributed space-time codes. The usage of multiple hops will further improve the wireless communication. This paper presents an energy efficient selection of cooperative nodes with respect to their geographical location and the number of nodes participating in cooperative communications in wireless networks. Here, we first give a simple localized routing algorithm, called Localized Energy-Aware Restricted Neighborhood routing (LEARN), which can guarantee the energy efficiency of its route if it can find the route successfully. We then theoretically study its critical transmission radius in random networks which can guarantee that LEARN routing finds a route for any source and destination pairs asymptotically almost surely. We also extend the proposed routing into three-dimensional (3D) networks and derive its critical transmission radius in 3D random networks. The simulation result shows that the proposed node selection scheme will results in better selection of nodes for large scale random networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems

An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...

متن کامل

Energy Efficient Zone Division Multihop Hierarchical Clustering Algorithm for Load Balancing in Wireless Sensor Network

Wireless sensor nodes are use most embedded computing application. Multihop cluster hierarchy has been presented for large wireless sensor networks (WSNs) that can provide scalable routing, data aggregation, and querying. The energy consumption rate for sensors in a WSN varies greatly based on the protocols the sensors use for communications. In this paper we present a cluster based routing alg...

متن کامل

Energy Efficiency Comparison of MIMO-Based and Multihop Sensor Networks

Wireless sensor networks (WSNs) demand the implementation of energy-aware techniques and low-complexity protocols in all layers. Recently, a MIMO-based structure has been proposed to offer enhanced energy savings in WSNs. In this paper, we examine and compare MIMO-based WSN with a multihop transmission in terms of energy efficiency. The results depend on the network density, the channel conditi...

متن کامل

On the Lifetime Extension of Energy-Efficient Multihop Broadcast Networks

Abstract In this paper, we address the problem of energy efficient multicast routing in wireless Mobile Adhoc NETwork (MANET). It is a challenging environment because every node operates on limited battery resources and multihop routing paths are used over a constantly changing network environment due to node mobility. We define the network lifetime as duration of time until first node failure ...

متن کامل

F-MEEP: Fuzzy Logic Based Multihop Energy Efficient Routing Protocol for HWSN

Energy preservation is one of the most important research challenges in Wireless Senor Networks (WSNs). In recent research, topologies and architectures have investigated that allow energy efficiency in WSNs. Clustering is one of the most famous energy efficient techniques. In clustering, the selection of cluster head (CH) and short distance multi-hop energy efficient communication between CH a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012